HDU 6755 - Fibonacci Sum(二项式定理+推式子)

2021/5/2 18:28:50

本文主要是介绍HDU 6755 - Fibonacci Sum(二项式定理+推式子),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

题面传送门

其实是一道还好的题罢,虽然做了我 2147483647(bushi,其实是 1.5h),估计也只是因为 HDU 不支持数据下载所以错误总 debug 出来

首先看到 \(10^9+9\) 及斐波那契数列,顿时心里一个激灵,这题和通项公式逃不掉了(

套用斐波那契数列通项公式 \(f_n=\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n)\) 得:

\[\begin{aligned} \text{Ans}&=\sum\limits_{i=0}^nF_{ic}^k \\&=\sum\limits_{i=0}^n(\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^{ic}-(\dfrac{1-\sqrt{5}}{2})^{ic}))^k \\&=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n((\dfrac{1+\sqrt{5}}{2})^{ic}-(\dfrac{1-\sqrt{5}}{2})^{ic})^k \end{aligned} \]

看到二项式的 \(k\) 次方,可以套路地想到二项式定理,用二项式定理展开一下可继续推得:

\[\begin{aligned} \text{Ans}&=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n((\dfrac{1+\sqrt{5}}{2})^{ic}-(\dfrac{1-\sqrt{5}}{2})^{ic})^k\\ &=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n\sum\limits_{j=0}^k\dbinom{k}{j}(\dfrac{1+\sqrt{5}}{2})^{icj}(-(\dfrac{1-\sqrt{5}}{2})^{ic})^{k-j}\\ &=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n\sum\limits_{j=0}^k\dbinom{k}{j}(\dfrac{1+\sqrt{5}}{2})^{icj}(\dfrac{1-\sqrt{5}}{2})^{ic(k-j)}(-1)^{k-j} \end{aligned} \]

方便起见,我们设 \(A=\dfrac{1+\sqrt{5}}{2},B=\dfrac{1-\sqrt{5}}{2}\),那么式子可进一步化为

\[\begin{aligned} \text{Ans} &=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n\sum\limits_{j=0}^k\dbinom{k}{j}A^{icj}B^{ic(k-j)}(-1)^{k-j}\\ &=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n\sum\limits_{j=0}^k\dbinom{k}{j}A^{icj}B^{ick}\dfrac{1}{B^{icj}}(-1)^{k-j}\\ &=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{i=0}^n\sum\limits_{j=0}^k\dbinom{k}{j}(\dfrac{A}{B})^{icj}B^{ick}(-1)^{k-j}\\ &=\dfrac{1}{(\sqrt{5})^k}\sum\limits_{j=0}^k(-1)^{k-j}\dbinom{k}{j}\sum\limits_{i=0}^n(\dfrac{A}{B})^{icj}B^{ick} \end{aligned} \]

推到这里,前面一个 \(\sum\) 显然直接枚举是不会出问题的,至于后面一个 \(\sum\),如果我们设 \(P=(\dfrac{A}{B})^{cj}\times B^{ck}\),那么里面的式子可写为 \(\sum\limits_{i=0}^nP^i\),这显然就是一个等比数列求和的形式,直接求即可。

时间复杂度 \(Tk\log n\),顺带说一句,本题略微有点卡常,有以下卡常技巧:

  • 式子里有些东西是可以预处理出来的,大可不必每枚举一遍 \(j\) 都重新快速幂计算一遍,否则常数肯定上天
  • 在等比数列求和时,由于 \(10^9+9\) 是质数,可以通过欧拉降幂 \(a^m\equiv a^{m\bmod (10^9+8)}\pmod{10^9+9}\) 减少快速幂的指数,这样常数可小一半
const int S5=383008016;
const int MOD=1e9+9;
const int INV2=5e8+5;
const int MAXN=1e5;
int qpow(int x,ll e){
	int ret=1;
	for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
	return ret;
}
int IV5,A,B,MUL,fac[MAXN+5],ifac[MAXN+5];
void init_fac(int n){
	for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
	for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;}
int sum(int x,ll y){if(x==1) return (y+1)%MOD;return 1ll*(qpow(x,(y+1)%(MOD-1))-1+MOD)*qpow((x-1+MOD)%MOD,MOD-2)%MOD;}
void solve(){
	ll n,c;int k;scanf("%lld%lld%d",&n,&c,&k);c%=(MOD-1);
	int mul=qpow(IV5,k),ans=0,M=qpow(qpow(B,c),k),stp=qpow(MUL,c);
	for(int i=0,pw=1;i<=k;i++,pw=1ll*pw*stp%MOD){
		int t=1ll*pw*M%MOD;
		int add=1ll*binom(k,i)*sum(t,n)%MOD;
		if((k-i)&1) ans=(ans-add+MOD)%MOD;
		else ans=(ans+add)%MOD;
	} ans=1ll*ans*mul%MOD;printf("%d\n",ans);
}
int main(){
	IV5=qpow(S5,MOD-2);
	A=1ll*(1+S5)*INV2%MOD;
	B=1ll*(1-S5+MOD)*INV2%MOD;
	MUL=1ll*A*qpow(B,MOD-2)%MOD;
	init_fac(MAXN);int qu;scanf("%d",&qu);
	while(qu--) solve();
    return 0;
}


这篇关于HDU 6755 - Fibonacci Sum(二项式定理+推式子)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程