平面向量的基本定理及坐标表示

2021/12/22 23:52:41

本文主要是介绍平面向量的基本定理及坐标表示,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

高一同步拔高练习,难度3颗星!

模块导图

1640142234094.png

知识剖析

平面向量的基本定理

1 平面向量的基本定理
设\(\overrightarrow{e_{1}}\),\(\overrightarrow{e_{2}}\)同一平面内的两个不共线向量, \(\vec{a}\)是该平面内任一向量,则存在唯一实数对$ (λ,μ)$,使 \(\vec{a}=\lambda \overrightarrow{e_{1}}+\mu \overrightarrow{e_{2}}\).
我们把\(\{\vec{e_1},\vec{e_2}\}\)叫做表示这个平面内所有向量的一个基底.
如下图,\(\vec{a}=\overrightarrow{O M}+\overrightarrow{O N}=\lambda \overrightarrow{e_{1}}+\mu \overrightarrow{e_{2}}\),其中\(\lambda=\dfrac{|O M|}{|O A|}\),\(\mu=\dfrac{|O N|}{|O B|}\).
image.png
\({\color{Red}{PS}}\) 唯一性的解释
若\(\overrightarrow{e_{1}}\),\(\overrightarrow{e_{2}}\)不共线,且\(\lambda_{1} \overrightarrow{e_{1}}+\mu_{1} \overrightarrow{e_{2}}=\lambda_{2} \overrightarrow{e_{1}}+\mu_{2} \overrightarrow{e_{2}}\), 则\(λ_1=λ_2\) ,\(μ_1=μ_2\).

2 正交分解及其坐标表示
① 正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解;
image.png
如上图,重力\(G\)分解成平行斜面的力\(F_1\)和垂直于斜面的压力\(F_2\).

② 向量的坐标表示
在平面内建立直角坐标系,以与\(x\)轴、\(y\)轴方向相同的两个单位向量\(\vec{i}\) ,\(\vec{j}\)为基底,则平面内的任一向量\(\vec{a}\)表示为\(\vec{a}=x \vec{i}+y \vec{j}=(x, y)\),\((x ,y)\)称为向量\(\vec{a}\)的坐标,\(\vec{a}=(x, y)\)叫做向量\(\vec{a}\)的坐标表示.
向量\(\vec{a}=(x, y)\),就是以原点\((0,0)\)为起点,点\((x ,y)\)为终点的向量.

平面向量数乘运算与数量积的坐标表示

1 坐标运算
设\(\vec{a}=\left(x_{1}, y_{1}\right)\) ,\(\vec{b}=\left(x_{2}, y_{2}\right)\),则
\((1)\)向量的模\(|\vec{a}|=\sqrt{x_{1}^{2}+y_{1}^{2}}\)
\((2)\)向量的加减法运算 \(\vec{a}+\vec{b}=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\),\(\vec{a}-\vec{b}=\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\)
\((3)\)若\(A(x_1 ,y_1)\),\(B(x_2 ,y_2)\),则\(\overrightarrow{A B}=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)\)
\((4)\)实数与向量的积 \(\lambda \vec{a}=\lambda\left(x_{1}, y_{1}\right)=\left(\lambda x_{1}, \lambda y_{1}\right)\)
\((5)\)数量积\(\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}\)
\((6)\)夹角余弦值\(\cos <\vec{a}, \vec{b}>=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}| \vec{b} \mid}=\dfrac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}} \cdot \sqrt{x_{2}^{2}+y_{2}^{2}}}\)
\({\color{Red}{拓展}}\) 定比分点
线段\(P_1P_2\)的端点\(P_1\)、\(P_2\)的坐标分别是\((x_1 ,y_1)\),\((x_2 ,y_2)\),点\(P\)是直线\(P_1 P_2\)上的一点,
当\(\overrightarrow{P_{1} P}=\lambda \overrightarrow{P P_{2}}\)时,点\(P\)的坐标是\(\left(\dfrac{x_{1}+\lambda x_{2}}{1+\lambda}, \dfrac{y_{1}+\lambda y_{2}}{1+\lambda}\right)\)
image.png
2 平面向量位置关系
若\(\vec{a}\left(x_{1}, y_{1}\right)\),\(\vec{b}\left(x_{2}, y_{2}\right)\),
\(\vec{a} \| \vec{b} \Leftrightarrow x_{1} y_{2}=x_{2} y_{1}\),
\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0 \Rightarrow x_{1} x_{2}+y_{1} y_{2}=0\).

经典例题

【题型一】平面向量的基本定理的理解

【典题1】 如果\(\overrightarrow{e_{1}}\),\(\overrightarrow{e_{2}}\)是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是(  )
A.\(\overrightarrow{e_{1}}\)与\(\overrightarrow{e_{1}}+\overrightarrow{e_{2}}\)
B.\(\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}\)与\(\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}}\)
C.\(\overrightarrow{e_{1}}+\overrightarrow{e_{2}}\)与\(\overrightarrow{e_{1}}-\overrightarrow{e_{2}}\)
D.\(\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}\)与\(-\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}}\)
【解析】\(\overrightarrow{e_{1}}\),\(\overrightarrow{e_{2}}\)是平面内一组不共线的向量,作为基底的向量,前提为不共线向量,所以对于选项\(ABC\)都为不共线向量,选项\(D\) \(\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}\)与\(-\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}}\)为共线向量.
故选 \(D\).

【典题2】已知方程\(\vec{a} x^{2}+\vec{b} x+\vec{c}=0\),其中\(\vec{a}\),\(\vec{b}\),\(\vec{c}\)是非零向量,且\(\vec{a}\),\(\vec{b}\)不共线,则该方程(  )
A.至多有一个解 B.至少有一个解
C.至多有两个解 D.可能有无数多个解
【解析】\(∵\vec{a} x^{2}+\vec{b} x+\vec{c}=0\),\(\therefore \vec{c}=-\vec{a} x^{2}-\vec{b} x\),
\(∵\vec{a}\),\(\vec{b}\)不共线,
故存在唯一一对实数\(λ ,μ\)使\(\vec{c}=\lambda \vec{a}+\mu \vec{b}\)
若\(λ\)满足\(λ=-μ^2\),则方程有一个解;
\(λ\)不满足\(λ=-μ^2\),则方程无解;所以至多一个解,
故选 \(A\).
【点拨】本题考核对平面向量的基本定理中的”存在性、唯一性”的理解.

【题型二】平面向量的基本定理的运用

【典题1】已知在\(△ABC\)中,\(M ,N\)分别是边\(AB\),\(AC\)上的点,且\(\overrightarrow{A M}=2 \overrightarrow{M B}\),\(\overrightarrow{A N}=3 \overrightarrow{N C}\),\(BN\)与\(CM\)相交于点\(P\) , 记\(\vec{a}=\overrightarrow{A B}\),\(\vec{b}=\overrightarrow{A C}\),用\(\vec{a}, \quad \vec{b}\)表示\(\overrightarrow{A P}\)的结果是(  )
A.\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{2}{3} \vec{b}\)
B.\(\overrightarrow{A P}=\dfrac{1}{2} \vec{a}+\dfrac{1}{3} \vec{b}\)
C.\(\overrightarrow{A P}=\dfrac{2}{5} \vec{a}+\dfrac{1}{3} \vec{b}\)
D.\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\)
image.png

【解析】 由题意,可知\(\overrightarrow{A M}=\dfrac{2}{3} \overrightarrow{A B}\),\(\overrightarrow{A N}=\dfrac{3}{4} \overrightarrow{A C}\)
设\(\overrightarrow{B P}=\lambda \overrightarrow{B N}\),
则有\(\overrightarrow{A P}=\overrightarrow{A B}+\overrightarrow{B P}=\overrightarrow{A B}+\lambda \overrightarrow{B N}\)\(=\overrightarrow{A B}+\lambda(\overrightarrow{A N}-\overrightarrow{A B})\)
\(=\overrightarrow{A B}+\lambda \overrightarrow{A N}-\lambda \overrightarrow{A B}\)\(=(1-\lambda) \overrightarrow{A B}+\lambda \cdot \dfrac{3}{4} \overrightarrow{A C}\)\(=(1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}\) ①
又设\(\overrightarrow{C P}=\mu \overrightarrow{C M}\),
则有\(\overrightarrow{A P}=\overrightarrow{A C}+\overrightarrow{C P}=\overrightarrow{A C}+\mu \overrightarrow{C M}\)\(=\overrightarrow{A C}+\mu(\overrightarrow{A M}-\overrightarrow{A C})\)\(=\overrightarrow{A C}+\mu \overrightarrow{A M}-\mu \overrightarrow{A C}\)
\(=(1-\mu) \overrightarrow{A C}+\mu \cdot \dfrac{2}{3} \overrightarrow{A B}\)\(=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\) ②
通过比较①②,可得关于\(λ ,μ\)的二元一次方程组:\(\left\{\begin{array}{l} 1-\lambda=\dfrac{2}{3} \mu \\ \dfrac{3}{4} \lambda=1-\mu \end{array}\right.\),
解此二元一次方程组,得\(\left\{\begin{array}{l} \lambda=\dfrac{2}{3} \\ \mu=\dfrac{1}{2} \end{array}\right.\),
将结果带入①式,可得\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\),故选:\(D\).
【点拨】
① 这里给到的方法是以不共线向量\(\vec{a}, \vec{b}\)为基底,通过两个方式得到向量\(\overrightarrow{A P}\)的表达式,即\((1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\),再由平面向量的基本定理求出\(\overrightarrow{A P}\).
② 本题方法很多也可以用平行四边形法则求解.

【典题2】 如图,两块斜边长相等的直角三角板拼在一起.若\(\overrightarrow{A D}=x \overrightarrow{A B}+y \overrightarrow{A C}\),求\(x ,y\).
image.png
【解析】以\(AB\)所在直线为\(x\)轴,以\(A\)为原点建立平面直角坐标系(如图).
image.png
令\(AB=2\),则\(\overrightarrow{A B}=(2,0)\),\(\overrightarrow{A C}=(0,2)\)
过\(D\)作\(DF⊥AB\)交\(AB\)的延长线为\(F\),由已知得\(D E=B C=2 \sqrt{2}\),故\(DB=\sqrt{6}\),
则\(D F=B F=\sqrt{3}\),则\(\overrightarrow{A D}=(2+\sqrt{3}, \sqrt{3})\).
\(\because \overrightarrow{A D}=x \overrightarrow{A B}+y \overrightarrow{A C}\),\(\therefore(2+\sqrt{3}, \sqrt{3})=(2 x, 2 y)\).
即有\(x=1+\dfrac{\sqrt{3}}{2}\),\(y=\dfrac{\sqrt{3}}{2}\)
【点拨】
① 本题也可以用平行四边形法则求解;
② 这里讲解的方法是建系法,常见步骤如下
(1) 找到合适的方式(一般是利用题中垂直关系等)建系;
(2) 通过一些几何的知识点求出线段的长度,进而得到关键点的坐标;
(3) 关键向量用坐标形式表示,比如本题中的\(\overrightarrow{A B}=(2,0)\),\(\overrightarrow{A D}=(2+\sqrt{3}, \sqrt{3})\)等;
(4) 得到方程组求解(其实就是利用平面向量的基本定理的唯一性).
③ 当根据题意发现容易建系(比如有明显的垂直关系等),可考虑建系法,它充分体现了“解析几何的优势”.

【典题3】 在直角梯形\(ABCD\)中,\(AB⊥AD\),\(AD∥BC\),\(AB=BC=2AD=2\),\(E\),\(F\)分别为\(BC\),\(CD\)的中点,以\(A\)为圆心,\(AD\)为半径的半圆分别交\(BA\)及其延长线于点\(M\),\(N\),点\(P\)在\(\widehat{M D N}\)上运动(如图).若\(\overrightarrow{A P}=\lambda \overrightarrow{A E}+\mu \overrightarrow{B F}\),其中\(λ ,μ∈R\),则\(2λ-5μ\)的取值范围是\(\underline{\quad \quad}\).
image.png
【解析】 建立如图所示的坐标系,
image.png
则\(A(0 ,0)\),\(B(2 ,0)\) ,\(D(0 ,1)\),\(C(2 ,2)\),\(E(2 ,1)\),\(F\left(1, \dfrac{3}{2}\right)\),
\(P(\cos α ,\sin α)\) \((0≤α≤π)\),
\({\color{Red}{(因为P在单位圆上,α为∠PAM)}}\)
由\(\overrightarrow{A P}=\lambda \overrightarrow{A E}+\mu \overrightarrow{B F}\)得\((\cos \alpha, \sin \alpha)\)\(=\lambda(2,1)+\mu\left(-1, \dfrac{3}{2}\right)=\left(2 \lambda-\mu, \lambda+\dfrac{3}{2} \mu\right)\)
\(\Rightarrow \cos \alpha=2 \lambda-\mu, \sin \alpha=\lambda+\dfrac{3}{2} \mu\)
\(\Rightarrow \lambda=\dfrac{3}{8} \cos \alpha+\dfrac{1}{4} \sin \alpha, \quad \mu=\dfrac{1}{2} \sin \alpha-\dfrac{1}{4} \cos \alpha\)
\(\therefore 2 \lambda-5 \mu\)\(=2\left(\dfrac{3}{8} \cos \alpha+\dfrac{1}{4} \sin \alpha\right)-5\left(\dfrac{1}{2} \sin \alpha-\dfrac{1}{4} \cos \alpha\right)\)
\(=-2(\sin \alpha-\cos \alpha)=-2 \sqrt{2} \sin \left(\alpha-\dfrac{\pi}{4}\right)\)
\(\because \alpha-\dfrac{\pi}{4} \in\left[-\dfrac{\pi}{4}, \dfrac{3 \pi}{4}\right]\) , \(\therefore-2 \sqrt{2} \sin \left(\alpha-\dfrac{\pi}{4}\right) \in[-2 \sqrt{2}, 2]\)
即\(2λ-5μ\)的取值范围是\([-2 \sqrt{2}, 2]\).
【点拨】 利用建系法求解,点\(P\)在单位圆上,巧妙的设为\(P(\cosα ,\sinα)\),引入参数\(α\),此处要注意\(0≤α≤π\),则\(2λ-5μ\)是\(α\)的函数,求最值不难了.

巩固练习

1(★) 下列各组向量中,可以作为基底的是(  )
A.\(\overrightarrow{e_{1}}=(0,0), \overrightarrow{e_{2}}=(1,2)\)
B.\(\overrightarrow{e_{1}}=(-1,2), \overrightarrow{e_{2}}=(5,7)\)
C.\(\overrightarrow{e_{1}}=(3,5), \overrightarrow{e_{2}}=(6,10)\)
D.\(\overrightarrow{e_{1}}=(2,-3), \overrightarrow{e_{2}}=(-6,9)\)

2 (★★) 如图,四边形\(ABCD\)是正方形,延长\(CD\)至\(E\),使得\(DE=CD\).若动点\(P\)从点A出发,沿正方形的边按逆时针方向运动一周回到\(A\)点,其中\(\overrightarrow{A P}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A E}\),下列判断正确的是(  )
image.png
A.满足\(λ+μ=2\)的点\(P\)必为\(BC\)的中点
B.满足\(λ+μ=1\)的点\(P\)有且只有一个
C.满足\(λ+μ=a(a>0)\)的点\(P\)最多有\(3\)个
D.\(λ+μ\)的最大值为\(3\)

3 (★★)如图,在\(△ABC\)中,设\(\overrightarrow{A B}=\vec{a}\),\(\overrightarrow{A C}=\vec{b}\),\(AP\)的中点为\(Q\),\(BQ\)的中点为\(R\),\(CR\)的中点为\(P\),若\(\overrightarrow{A P}=m \vec{a}+n \vec{b}\),则\(m、n\)对应的值为\(\underline{\quad \quad}\).
image.png

4 (★★)如图,已知\(|\overrightarrow{O A}|=|\overrightarrow{O B}|=1\),\(|\overrightarrow{O C}|=\sqrt{3}\),\(\overrightarrow{O C} \perp \overrightarrow{O B}\),\(\langle\overrightarrow{O A}, \overrightarrow{O C}\rangle=30^{\circ}\),若\(\overrightarrow{O C}=x \overrightarrow{O A}+y \overrightarrow{O B}\),则\(x+y=\)\(\underline{\quad \quad}\).
image.png

5(★★★) 在平面向量中有如下定理:设点\(O\)、\(P\)、\(Q\)、\(R\)为同一平面内的点,则\(P\)、\(Q\)、\(R\)三点共线的充要条件是:存在实数\(t\),使\(\overrightarrow{O P}=(1-t) \overrightarrow{O Q}+t \overrightarrow{O R}\).试利用该定理解答下列问题:如图,在\(△ABC\)中,点\(E\)为\(AB\)边的中点,点\(F\)在\(AC\)边上,且\(CF=2FA\),\(BF\)交\(CE\)于点\(M\),设\(\overrightarrow{A M}=x \overrightarrow{A E}+y \overrightarrow{A F}\),则\(x+y=\)\(\underline{\quad \quad}\).
image.png

6(★★★) 在梯形\(ABCD\)中,\(\overrightarrow{A B}=2 \overrightarrow{D C}\),\(\overrightarrow{B E}=\dfrac{1}{3} \overrightarrow{B C}\),\(P\)为线段\(DE\)上的动点(包括端点),且\(\overrightarrow{A P}=\lambda \overrightarrow{A B}+\mu \overrightarrow{B C}\)\((\lambda, \mu \in \boldsymbol{R})\),则\(λ^2+μ\)的最小值为\(\underline{\quad \quad}\).

7(★★★)如图,正方形\(ABCD\)的边长为\(2\),\(E\) ,\(F\)分别为\(BC\),\(CD\)的动点,且\(|BE|=2|CF|\),设\(\overrightarrow{A C}=x \overrightarrow{A E}+y \overrightarrow{A F}\)\((x, y \in R)\),则\(x+y\)的最大值是\(\underline{\quad \quad}\).
image.png

8(★★★)如图,在平面四边形\(ABCD\)中,\(∠CBA=∠CAD=90°\),\(∠ACD=30°\),\(AB=BC\),点\(E\)在线段\(BC\)上,且\(\overrightarrow{B C}=3 \overrightarrow{B E}\),若\(\overrightarrow{A C}=\lambda \overrightarrow{A D}+\mu \overrightarrow{A E}\)\((\lambda, \mu \in \boldsymbol{R})\),则\(\dfrac{\mu}{\lambda}\)的值为\(\underline{\quad \quad}\).
image.png

答案

  1. \(B\)
  2. \(D\)
  3. \(m=\dfrac{2}{7}, n=\dfrac{4}{7}\)
  4. \(2\)
  5. \(\dfrac{7}{5}\)
  6. \(\dfrac{11}{9}\)
  7. \(\dfrac{\sqrt{2}+1}{2}\)
  8. \(\sqrt{3}\)

【题型三】 向量位置关系

【典题1】 已知平面内三向量\(\vec{a}=(2,1)\),\(\vec{b}=(-1,3)\),\(\vec{c}=(-2,2)\)
(1)求满足\(\vec{a}=m \vec{b}+n \vec{c}\)的实数\(m ,n\);
(2)若\((2 \vec{a}+k \vec{c} \|(\vec{b}+\vec{c})\),求实数\(k\)的值;
(3)若\((2 \vec{a}+k \vec{c}) \perp(\vec{b}+\vec{c})\),求实数\(k\)的值.
【解析】 (1) \(m \vec{b}+n \vec{c}=m(-1,3)+n(-2,2)\)\(=(-m-2 n, 3 m+2 n)=(2,1)\),
\(\therefore\left\{\begin{array}{l} -m-2 n=2 \\ 3 m+2 n=1 \end{array}\right.\),解得\(m=\dfrac{3}{2}\),\(n=-\dfrac{7}{4}\).
(2) \(2 \vec{a}+k \vec{c}=2(2,1)+k(-2,2)=(4-2 k, 2+2 k)\),
\(\vec{b}+\vec{c}=(-3,5)\),
\(\because(2 \vec{a}+k \vec{c}) / /(\vec{b}+\vec{c})\),\(∴5(4-2k)-(-3)(2+2k)=0\),解得\(k=\dfrac{13}{2}\).
(3)\(\because(2 \vec{a}+k \vec{c}) \perp(\vec{b}+\vec{c})\),由(2)可得\(-3(4-2k)+5(2+2k)=0\).
\(\therefore k=\dfrac{1}{8}\).

【典题2】 设向量\(\overrightarrow{O A}=(1,-2)\),\(\overrightarrow{O B}=(a,-1)\),\(\overrightarrow{O C}=(-b, 0)\),其中 \(O\)为坐标原点,\(b>0\),若 \(A ,B ,C\)三点共线,则\(\dfrac{1}{a}+\dfrac{2}{b}\)的最小值为\(\underline{\quad \quad}\).
【解析】\(\overrightarrow{A B}=(a-1,1)\),\(\overrightarrow{A C}=(-b-1,2)\).
\(∵A ,B ,C\) 三点共线,\(∴2(a-1)-(-b-1)=0\),化为\(2a+b=1\).
则\(\dfrac{1}{a}+\dfrac{2}{b}=(2 a+b)\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)\(=4+\dfrac{b}{a}+\dfrac{4 a}{b} \geq 4+2 \sqrt{\dfrac{b}{a} \cdot \dfrac{4 a}{b}}=8\),
当且仅当\(b=2 a=\dfrac{1}{2}\)时取等号.
【点拨】\(A ,B ,C\)三点共线,即\(\overrightarrow{A B} / / \overrightarrow{A C}\).

【典题3】 已知向量\(\vec{a}=(2,1)\),\(\vec{b}=(-1, m)\),若\(\vec{a}\)与\(\vec{b}\)夹角为钝角,则\(m\)的取值范围是\(\underline{\quad \quad}\).
【解析】 向量\(\vec{a}=(2,1)\),\(\vec{b}=(-1, m)\),
若\(\vec{a}\)与\(\vec{b}\)夹角为钝角,则\(\left\{\begin{array}{l} \vec{a} \cdot \vec{b}<0 \\ \vec{a} 、 \vec{b} \text { 不共线 } \end{array}\right.\),
\({\color{Red}{(注意排除\vec{a},\vec{b}共线的情况)}}\)
即\(\left\{\begin{array}{l} 2 \times(-1)+1 \cdot m<0 \\ -\dfrac{1}{2} \neq m \end{array}\right.\),解得\(m<2\)且\(m \neq-\dfrac{1}{2}\),
\(∴m\)的取值范围是\(\left(-\infty,-\dfrac{1}{2}\right) \cup\left(-\dfrac{1}{2}, 2\right)\).
【点拨】由数量积\(\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta\)可知
\(\vec{a} \perp \vec{b}⇒ \vec{a} \cdot \vec{b}=0\);\(\vec{a}\)与\(\vec{b}\)夹角为钝角\(⇒\left\{\begin{array}{l} \vec{a} \cdot \vec{b}<0 \\ \vec{a} 、 \vec{b} \text { 不共线 } \end{array}\right.\);\(\vec{a}\)与\(\vec{b}\)夹角为锐角\(\Rightarrow\left\{\begin{array}{l} \vec{a} \cdot \vec{b}>0 \\ \vec{a}, \vec{b} \text { 不共线 } \end{array}\right.\).

巩固练习

1(★★) 已知两个向量\(\vec{a}=(\cos \theta, \sin \theta)\),\(\vec{b}=(\sqrt{3},-1)\),则\(|2 \vec{a}-\vec{b}|\)的最大值是(  )
A.\(2\) B.\(2 \sqrt{2}\) C.\(4\) D.\(4 \sqrt{2}\)

2(★★) 已知点\(A(2 ,3)\),\(B(-2 ,6)\),\(C(6 ,6)\),\(D(10 ,3)\),则以\(A、B、C、D\)为顶点的四边形是(  )
A.梯形 B.邻边不等的平行四边形
C.菱形 D.两组对边均不平行的四边形

3(★★) 已知\(P_1 (2 ,-1)\),\(P_2 (0 ,5)\)且点\(P\)在\(P_1 P_2\)的延长线上,\(\left|\overrightarrow{P_{1} P}\right|=2\left|\overrightarrow{P P_{2}}\right|\),则点\(P\)的坐标为  .

4(★★) 已知\(\vec{a}=(1,2+\sin x)\),\(\vec{b}=(2, \cos x)\),\(\vec{c}=(-1,2)\),\((\vec{a}-\vec{c}) \| \vec{b}\),则锐角\(x\)等于\(\underline{\quad \quad}\).

5(★★) 已知向量\(\vec{a}=(1,0)\),\(\vec{b}=(0,1)\),若\((k \vec{a}+\vec{b}) \perp(3 \vec{a}-\vec{b})\),则实数\(k=\)\(\underline{\quad \quad}\).

6(★★) 在平面四边形\(ABCD\)中,\(\overrightarrow{A C}=(1,3)\),\(\overrightarrow{B D}=(-9,3)\),则四边形\(ABCD\)的面积为\(\underline{\quad \quad}\).

答案

  1. \(C\)
  2. \(B\)
  3. \((-2,11)\)
  4. \(45°\)
  5. \(\dfrac{1}{3}\)
  6. \(15\)

【题型四】利用建系求解数量积

【典题1】如图,在菱形\(ABCD\)中,\(AB=1\),\(∠BAD=60°\),且\(E\)为对角线\(AC\)上一点.
(1)求 \(\overrightarrow{A B} \cdot \overrightarrow{A D}\);
(2)若\(\overrightarrow{A E}=2 \overrightarrow{E C}\),求\(\overrightarrow{A E} \cdot \overrightarrow{A B}\);
(3)连结\(BE\)并延长,交\(CD\)于点\(F\),连结\(AF\),设\(\overrightarrow{C E}=\lambda \overrightarrow{E A}(0 \leq \lambda \leq 1)\).当\(λ\)为何值时,可使\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)最小,并求出\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)的最小值.
image.png
【解析】(1)\(\overrightarrow{A B} \cdot \overrightarrow{A D}=A B \cdot A D \cdot \cos \angle B A D=1 \times 1 \times \cos 60^{\circ}=\dfrac{1}{2}\).
(2)\(\because \overrightarrow{A E}=2 \overrightarrow{E C}\),\(\therefore \overrightarrow{A E}=\dfrac{2}{3} \overrightarrow{A C}=\dfrac{2}{3}(\overrightarrow{A B}+\overrightarrow{A D})\)
\(\therefore \overrightarrow{A E} \cdot \overrightarrow{A B}=\dfrac{2}{3} \overrightarrow{A C} \cdot \overrightarrow{A B}\)\(=\dfrac{2}{3}(\overrightarrow{A B}+\overrightarrow{A D}) \cdot \overrightarrow{A B}\)\(=\dfrac{2}{3} \overrightarrow{A B}^{2}+\dfrac{2}{3} \overrightarrow{A D} \cdot \overrightarrow{A B}=\dfrac{2}{3}+\dfrac{2}{3} \times \dfrac{1}{2}=1\).
(3)以\(AB\)所在直线为\(x\)轴,以\(A\)为原点建立平面直角坐标系,
image.png
则\(A(0 ,0)\),\(B(1 ,0)\),\(\left(\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\).
\({\color{Red}{(点A、B的坐标已求,故要出点F坐标是关键)}}\)
\(\because \overrightarrow{C E}=\lambda \overrightarrow{E A}\),\(\therefore C E=\lambda E A\)
由图易得\(\triangle A B E \backsim \triangle C F E\),可得\(\dfrac{C F}{A B}=\dfrac{C E}{A E}=\lambda\),\(∴CF=λAB=λ\)
\(∴DF=1-λ\),则\(F\left(\dfrac{3}{2}-\lambda, \dfrac{\sqrt{3}}{2}\right)\)
\(\therefore \overrightarrow{A F}=\left(\dfrac{3}{2}-\lambda, \dfrac{\sqrt{3}}{2}\right)\),\(\overrightarrow{B F}=\left(\dfrac{1}{2}-\lambda, \dfrac{\sqrt{3}}{2}\right)\)
\(\therefore \overrightarrow{A F} \cdot \overrightarrow{B F}=\left(\dfrac{3}{2}-\lambda\right) \times\left(\dfrac{1}{2}-\lambda\right)+\dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2}\)\(=\lambda^{2}-2 \lambda+\dfrac{3}{2}=(\lambda-1)^{2}+\dfrac{1}{2}\).
\(∴\)当\(λ=1\)时,\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)最小,最小值是\(\dfrac{1}{2}\).
【点拨】求数量积方法多样
① 直接利用数量积的定义\(\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta\),比如第一问求\(\overrightarrow{A D} \cdot \overrightarrow{A B}\);
② 把数量积中的向量转化为”信息量大”的向量,进而求解,比如第二问求\(\overrightarrow{A E} \cdot \overrightarrow{A B}\),转化为向量\(\overrightarrow{A D}\)和\(\overrightarrow{A B}\)的关系;
③ 建系法,利用几何的知识点求出关键点坐标,从而数量积问题转化为代数问题,比如第三问求\(\overrightarrow{A F} \cdot \overrightarrow{B F}\),因为易得\(A、B\)的坐标,只要求出点F的坐标,就可以把数量积\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)转化为含λ的式子,最值就易求了!

巩固练习

1(★) 已知向量\(\vec{a}=(\sqrt{3}, 1)\),\(\vec{b}=(m-1,3)\),若向量\(\vec{a}, \vec{b}\)的夹角为锐角,则实数\(m\)的取值范围为\(\underline{\quad \quad}\).

2(★★) 如图所示,在梯形\(ABCD\)中,\(\angle A=\dfrac{\pi}{2}\),\(A B=\sqrt{2}\),\(BC=2\),\(A D=\dfrac{3}{2}\),点\(E\)为\(AB\)的中点,则\(\overrightarrow{C E} \cdot \overrightarrow{B D}=\)\(\underline{\quad \quad}\).
image.png

3(★★) 在平直角坐标系\(xOy\)中,\(A(1 ,0)\),\(B(0 ,2)\),点\(P\)在线段\(AB\)上运动,则\(\overrightarrow{O P} \cdot \overrightarrow{A P}\)的取值范围为\(\underline{\quad \quad}\).

4(★★)如图,菱形\(ABCD\)的边长为\(\sqrt{5}\),对角线\(AC=4\),边\(DC\)上点\(P\)与\(CB\)的延长线上点\(Q\)满足\(D P=B Q=\dfrac{\sqrt{5}}{3}\),则向量\(\overrightarrow{P A} \cdot \overrightarrow{P Q}\)的值是\(\underline{\quad \quad}\).
image.png

5(★★★) \(P\)是边长为\(2\)的正方形\(ABCD\)边界或内部一点,且\(\overrightarrow{P B}+\overrightarrow{P C}=\overrightarrow{P M}\),则\(\overrightarrow{A P} \cdot \overrightarrow{A M}\)的最大值是\(\underline{\quad \quad}\).

6(★★★) 如图,圆\(O\)是边长为\(2\)的正方形\(ABCD\)的内切圆,\(△PQR\)是圆\(O\)的内接正三角形,若\(△PQR\)绕着圆心\(O\)旋转,则\(\overrightarrow{A Q} \cdot \overrightarrow{O R}\)的最大值是\(\underline{\quad \quad}\).
image.png

答案

  1. \((1-\sqrt{3}, 1+3 \sqrt{3}) \cup(1+3 \sqrt{3},+\infty)\)
  2. \(-2\)
  3. \(\left[-\dfrac{1}{20}, 4\right]\)
  4. \(\dfrac{44}{9}\)
  5. \(5\)
  6. \(-\dfrac{1}{2}+\sqrt{2}\)


这篇关于平面向量的基本定理及坐标表示的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程